中国工程院外籍院士、上海理工大学光子芯片研究院院长顾敏与中国科学院上海光学精密机械研究所(以下简称上海光机所)研究员阮昊、上海理工大学光电信息与计算机工程学院教授文静等合作,在存储领域突破光学衍射极限,研发出超大容量纳米级三维光盘存储器,实现颠覆性的划时代光存储。相关研究成果近日发表于《自然》。
相比当前最先进的光盘库和硬盘驱动器数据阵列,“超级光盘”成本更低、能耗更少,将助推大数据时代数据存储的升级换代。“可以说,我们团队登上了这一领域的‘珠穆朗玛峰’。”论文通讯作者之一顾敏说。
存储容量提高上万倍
存储容量是普通光盘上万倍、普通硬盘上百倍的“超级光盘”,在中国科学院上海光学精密机械研究所诞生。这对于我国在信息存储领域突破关键核心技术、实现数字经济的可持续发展具有重大意义。
据论文通讯作者之一、上海光机所阮昊研究员介绍,存储是数字经济的基石之一,光存储技术具有绿色节能、安全可靠、寿命长的独特优势,非常适合长期低成本存储海量数据。然而受到光学衍射极限的限制,传统商用光盘的最大容量仅在百GB量级。
发展可同步实现超分辨写、超分辨读、三维存储及长寿命介质,是近10多年来光存储研究领域亟待解决的世界难题。2012年,本论文另一位通讯作者、上海理工大学顾敏院士提出了双光束超分辨光存储原理的设想。
经过长达7年坚持不懈的攻坚克难,“超级光盘”研究团队利用国际首创的双光束调控聚集诱导发光超分辨光存储技术,实验上首次在信息写入和读出均突破光学衍射极限的限制,实现了点尺寸为54nm、道间距为70nm的超分辨数据存储,并完成了100层的多层记录,单盘等效容量达Pb量级。经老化加速测试,光盘介质寿命大于40年。
上海光机所是我国重要的存储材料与技术研究基地。上海光机所相关负责人表示,“超级光盘”的诞生,完成了双光束超分辨三维光存储的原理和实验验证,未来实现产业化,还有很长的路要走。研究团队将加快原始创新和关键技术攻关,推动超大容量光存储的集成化和产业化进程,并拓展其在光显微成像、光显示、光信息处理等领域的交叉应用。
突破光学衍射极限的关键
据介绍,“超级光盘”研究有两个关键创新——找到适宜的聚集诱导发光材料、用飞秒激光调控性能。将两者结合在一起,可以突破光学衍射极限,实现稳定地“写入”和“读出”。
但实现这项突破绝非一日之功。突破衍射极限是物理学的一大难题,衍射效应会限制显微成像的分辨能力,让人们难以窥见物质的细节。而实现超大容量光存储,除了需要“见微”,还需要在适宜材料上长时间稳定读写。能否突破光学和材料学的学科壁垒,成为最近10余年来光存储领域的棘手问题。
2013年,顾敏带领团队首次利用双光束超分辨原理突破光学衍射极限,创造9纳米特征尺寸的世界纪录。但受限于材料,写入的存储仍难以实现稳定读出。
如何在读写两条通道上突破衍射极限、扫除材料障碍,实现超大容量光存储呢?这一问题始终萦绕在顾敏心头,他带领合作团队展开攻关,希望核心技术落在祖国大地上。彼时,在中国科学院院士干福熹的带领下,上海光机所作为我国最早开展数字光盘存储技术研究的科研机构也在进行相关布局。
在全球数据存储市场,主流光盘和固态硬盘领域一直被日美公司垄断。如果我国在大容量光存储领域取得突破,将有机会在数据存储方面实现“变道超车”。论文通讯作者之一阮昊介绍,传统发光染料材料在聚集状态下极易发生荧光猝灭,造成信息丢失,在纳米尺度下还存在被背景噪声淹没的难题,导致超分辨的信息难以读出。由于其通常依赖电镜扫描的读出方式,因而限制了超分辨技术在光存储领域中的应用。
为了找到理想的材料,研究团队采用高通量的方法,即一次做数百种材料,逐个验证哪种最合适。“当时把所有材料列出来之后,大家都很头痛,因为这既涉及光,又涉及材料。合作团队之间因为知识体系差异,也难以高效交流。”阮昊回忆说。研究团队用了5年时间不断摸索,排除了很多错误选项,直到2021年初,才“百里挑一”选出理想材料。
“我们选用的聚集诱导发光染料材料像有6片叶子的‘发光风车’,‘风车’转得越快,消耗的动能越多,对外发的光就越少。要让‘风车’发光更强,就要让它转慢一些。我们把‘风车’放在有机树脂薄膜里,用两束飞秒激光照射,就能让它们像天上的星星一样发出更强的光。”论文共同第一作者兼通讯作者文静比喻说,这使其可以超越衍射极限,分辨出两个相邻点的距离,实现精确读写。
10年有望形成产业
从光学显微技术,到当今“卡脖子”技术的光刻机,再到光存储技术,无一不被光学衍射极限所限制。在2021年Science发布的全世界最前沿的125个科学问题中,突破衍射极限限制更是在物理领域高居首位。该超分辨光盘的成功研制在信息写入和读出都突破了这一物理学难题,有助于我国在存储领域突破“卡脖子”障碍,将在大数据数字经济中发挥重大作用,以满足信息产业领域的重大需求。
阮昊说,存储是数字经济的基石之一,光存储技术具有绿色节能、安全可靠、寿命长的独特优势,非常适合长期低成本存储海量数据。“超级光盘”的诞生,只是完成了双光束超分辨三维光存储的原理和实验验证,是从“0”到“1”的突破,未来实现产业化,还有较长的路要走。阮昊期望未来科学界、产业界就光盘存储能达成新的共识,朝存算一体化方向发力:“一切都比较乐观的话,大概5年左右,‘超级光盘’有可能跟用户见面。”
在当前数字经济时代,硬盘驱动器、半导体闪光器件等主要存储设备在能耗、寿命和成本方面都存在局限。阮昊表示,当前固态硬盘发展接近极限,要做得更小,面临很大挑战。而半导体存储成本很高、寿命较短、数据容易丢失。光存储则能有效解决这些问题,因而是未来大数据、人工智能发展的一块基石。
据介绍,目前相关研究已申请专利,下一步的目标是走向产业界。不过,尽管研究团队已大幅增加存储的面积密度,但要实现产业化,在写入和读取速度以及能源效率等多个方面仍有待进一步提升,在大规模生产方面也需要继续摸索。
阮昊表示,未来产业化还涉及技术路线图的布局。“我国在2000年左右就制定了半导体存储、集成电路发展的技术路线图。推动光存储技术的发展,也要在突破原理后制定相关的路线图,才能吸引企业投资。”“如果经费有保障,通过和国内相关企业合作,估计10年左右就可以形成产业,占据主流市场,带来投资回报。”顾敏补充说。